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Abstract 

Background: Several epidemiological studies have reported that long-term exposure to fine 

particulate matter (PM2.5) is associated with higher mortality. Evidence regarding contributions 

of PM2.5 constituents is inconclusive.  

Objectives: We assembled a dataset of 12.5 million Medicare enrollees (≥65 yrs) to determine 

which PM2.5 constituents are: 1) associated with mortality controlling for previous-year PM2.5 

total mass (main effect); and 2) elevated in locations exhibiting stronger associations between 

previous-year PM2.5 and mortality (effect modification).  

Methods: For 518 PM2.5 monitoring locations (Eastern US, 2000-2006), we calculated monthly 

mortality rates, monthly long-term (previous 1-year average) PM2.5, and 7-year averages (2000-

2006) of major PM2.5 constituents [elemental carbon (EC), organic carbon matter (OCM), sulfate 

(SO4
=), silicon (Si), nitrate (NO3

-), and sodium (Na)] and community-level variables. We applied 

a Bayesian hierarchical model to estimate location-specific mortality rates associated with 

previous-year PM2.5 (model level 1) and identify constituents that contributed to the spatial 

variability of mortality, and constituents that modified associations between previous-year PM2.5 

and mortality (model level 2), controlling for community-level confounders. 

Results: One standard deviation (SD) increases in 7-year average EC, Si, and NO3
- 

concentrations were associated with 1.3% [95% posterior interval (PI): 0.3, 2.2], 1.4% (95% PI: 

0.6, 2.4), and 1.2% (95% PI: 0.4, 2.1) increases in monthly mortality, controlling for previous-

year PM2.5. Associations between previous-year PM2.5 and mortality were stronger in 

combination with 1-SD increases in SO4
= and Na.  
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Conclusions: Long-term exposures to PM2.5 and several constituents were associated with 

mortality in the elderly population of the Eastern US. Moreover, some constituents increased the 

association between long-term exposure to PM2.5 and mortality. These results provide new 

evidence that chemical composition can partly explain the differential toxicity of PM2.5. 
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Introduction 

Regulatory control of particulate matter (PM) could be dramatically improved with robust 

quantification of the evidence regarding the toxicity of various constituents of the PM mixture 

and of their sources (Science Advisory Board, U.S. Environmental Protection Agency (EPA), 

2004). Currently, PM is regulated based on the total mass concentration without regard to its 

chemical composition, but scientific evidence on which types of constituents are most harmful 

could result in more effective regulations. However, the knowledge regarding differential 

toxicities of PM constituents has been identified as a crucial research gap (National Research 

Council, 2004). 

Responding to the need for such evidence, for the last decade, data have been accumulated for 

the constituents of fine particulate matter (PM2.5) nationwide in the US and have provided 

opportunities for studying the association between morbidity/mortality risk and PM2.5 

constituents. Using these data, numerous epidemiological studies have reported evidence of 

health effects associated with PM2.5 constituents, both in short-term (a few days previous) and 

long-term (a few years previous) exposure timeframes. Studies focusing on the short-term health 

effects include Bell et al. (2014), Cao et al. (2012), Ito et al. (2011), Kim et al. (2012), Levy et al. 

(2012), Ostro et al. (2009), Peng et al. (2009), and Zhou et al. (2011). Fewer studies have 

investigated the long-term health effects of different PM2.5 constituents including Dockery et al. 

(1993), Ostro et al. (2010), and Pope et al. (1995; 2002). However, studies have not reported 

consistent findings regarding associations with specific constituents. Such discrepancies may be 

because of different aspects of the study design (e.g., population, confounding control, timeframe, 

and statistical analysis) and the EPA has called for further research (U.S. EPA, 2009). 
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To fill this research gap, we investigated the differential toxicity of long-term PM2.5 exposure 

according to its chemical composition based on a large-scale national database including 

approximately 12.5 million Medicare enrollees (≥65 yrs). Combining several sources of data, we 

constructed a monthly multi-site time series dataset for 518 PM2.5 monitoring locations in the 

Eastern region of the US during 2000–2006. The data include, for each monitoring location, 

monthly mortality rates, monthly values of the average PM2.5 concentration over the previous 12 

months, 7-year average concentrations of PM2.5 constituents, and community-level confounding 

variables on socio-economic status (SES) and racial composition. Using a Bayesian hierarchical 

(BH) regression model, we estimated spatially-varying (SV) mortality rates associated with 

previous-year PM2.5 and identified chemical constituents that explained the spatial variability of 

the mortality rates, controlling for PM2.5 and community-level characteristics. 

Methods 

Data Description 

PM2.5 total mass 

We obtained daily (24-hour average) concentrations of PM2.5 at 518 monitors in the Eastern US 

(Figure 1) for 2000–2006 from the EPA Air Quality System (AQS) database (U.S. EPA, 2014). 

Using the daily PM2.5 data, we calculated monthly long-term exposure to PM2.5 as described in 

detail in Greven et al. (2011). In brief, for the first day of every month and at each of the 518 

monitor locations, we calculated previous 1-year average of daily PM2.5 concentrations (xij) for 

ith monitor at jth month with i = 1,…, n and j = 1,…, ni. Because not all monitors had valid 

measurements for the entire study period, the number of monthly PM2.5 values at a given 

monitoring location (ni) varied from 33 to 70.  



6 

PM2.5 chemical constituents 

Although the US EPA measures over 50 PM2.5 chemical constituents, we focused on 6 identified 

in previous research as contributing substantially to PM2.5 total mass (Bell et al. 2007): elemental 

carbon (EC), organic carbon matter (OCM), sulfate (SO4
=), silicon (Si), nitrate (NO3

-), and 

sodium (Na). We obtained 7-year averages of the 6 chemical constituents at 174 monitors in the 

Eastern Region for 2000–2006 from the EPA AQS database, as described in detail elsewhere 

(Bell et al. 2007).  

One challenge in our study is that the PM2.5 constituents are measured at monitors (174 monitors) 

that are not collocated with the PM2.5 monitors (518 monitors) (Figure 1). We assumed that the 

levels of constituents are spatially homogenous within a 6-mile radius, and therefore linked 

PM2.5 monitors to PM2.5 constituent monitors within 6 miles. Out of the 518 PM2.5 monitors, 241 

had PM2.5 constituent monitors within 6 miles and we assigned 7-year averages of each PM2.5 

constituent of the closest constituent monitor to each of 241 PM2.5 monitor. For the remaining 

277 monitoring locations, we treated the levels of PM2.5 chemical constituents as missing and 

applied a statistical approach to impute the missing data, as described in Statistical Methods. For 

either measured or imputed values, we let zi = (zi1,…zi6)´ denote the 7-year average 

concentrations of the 6 chemical constituents for ith PM2.5 monitor location. 

Mortality count and total number of people at risk 

Mortality counts and the total number of people at risk were obtained at zip-code level from 

billing claims of Medicare enrollees who are fee-for-service Medicare beneficiaries (aged ≥65 

years) (Greven et al. 2011). For each of the 518 PM2.5 monitor locations, we calculated monthly 

numbers of deaths and people at risk among the Medicare enrollees residing in each zip-code 
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with a centroid < 6 miles from a PM2.5 monitor location. Depending on the location, 6-mile 

buffers around the monitors included the centroids of at least 3 and up to 20 different zip codes 

and the data were aggregated over 3-20 zip-codes. We let Yij and Nij denote the number of deaths 

and the people at risk for ith monitor location at jth month. For the whole study period across all 

518 locations, the total size of the study population was 12.5 million enrollees with the total 

number of deaths equal to 2.2 million approximately residing in 4,974 zip-codes. For the 241 

locations with PM2.5 constituent data available, 1.2 million deaths occurred among 7.5 million 

enrollees approximately living in 3,425 zip-codes. 

Community-level confounders 

We obtained zip-code level data on community-level confounding variables including SES and 

racial composition from the US Census 2000 (US Census Bureau, 2000). We averaged values 

over all zip-codes with centroids within 6 miles of each PM2.5 monitor and assigned the averaged 

value to each monitor. We let wi = (wi1,…wi5)´ denote the 5 community-level confounders: 

median family income, proportion of people with high-school diploma or equivalent, proportion 

of residents in urban environment, proportion of white residents, and proportion of black 

residents. 

Statistical methods 

We analyzed the linked data using a BH Poisson regression model. The first level, a Poisson 

regression model with spatially varying (SV) random effects, was used to estimate the 

association between month-to-month variation in mortality rate and month-to-month variation in 

long-term (previous 1-year average) PM2.5: 
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Yij ~ Poisson(λij), i = 1,…, n and j = 1,…, ni, 

Log(λij) = log(Nij) + αi0 + αi1xij* , [1] 

where Yij and Nij are the number of deaths and the size of the population at risk for the ith 

monitoring location and jth month, xij*is the previous-year average PM2.5 centered around the 

location-specific average (i.e., xij*= xij – –xi), and αi0 and αi1 are the location-specific (spatially-

varying) random intercepts and slopes. The parameter αi0 represents the SV baseline mortality 

rate when the previous-year average PM2.5 is equal to its location-specific average (i.e., xij*= 0). 

The parameter αi1 represents the SV association between month-to-month variation in mortality 

rate and month-to-month variation in previous-year PM2.5.  

The second level of the BH model regresses the location-specific 7-year averages of PM2.5

constituents and community-level confounders on the SV intercept and slope, αi0 and αi1:  

αi0 = β0 + Σ
6
k=1 βkzik* + Σ

5
l=1 β6+l wil* + β12 

–xi + εi0 [2]

αi1 = γ0 + Σ
6
k=1 γkzik* + Σ

5
l=1 γ6+l wil* + εi1 , [3]

where zik* is the level of the kth chemical constituent and wil* is the lth community-level 

confounder at ith location, and εi0 and εi1 are random errors. We centered and scaled all 

explanatory variables to simplify interpretation and reduce multi-collinearity. Note that –xi is

included in the SV intercept model [2] to control for total PM2.5 concentration when estimating 

the effects of constituents on the spatially-varying mortality rate (Mostofsky et al. 2010).  

To account for potential residual spatial correlation in the second level, we assumed the error 

terms could be spatially correlated using a standard approach (Gelfand et al. 2003) (see 

Supplemental Material, Accounting for residual spatial correlation). We fit our BH model using 
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a Monte Carlo Markov Chain (MCMC) method (see Supplemental Material, “Two-stage 

estimation and the Markov Chain Monte Carlo (MCMC) algorithm”). All computations were 

conducted using R statistical software (http://www.r-project.org). 

There are four sets of parameters of interest. From the first level [1], we obtained 1) the SV (i.e., 

monitor-specific) baseline mortality rates when the previous-year PM2.5 was equal to its monitor-

specific overall average (SV intercepts αi0 for each location i, expressed as deaths/month/1,000 

persons); and 2) the SV association between month-to-month variation in mortality rate and 

month-to-month variation in previous-year PM2.5 (SV slopes αi1 for each location i, expressed as 

the percentage increase in the mortality rate associated with a 1-µg/m3 increase in previous-year 

PM2.5). From the second level [2]-[3], we obtained 3) the association between the SV intercepts 

and the monitor-specific 7-year averages of PM2.5 constituents, adjusted by community-level 

confounders and previous-year PM2.5 (the βk coefficients from [2], expressed as the percentage 

increase in the mortality rate associated with a 1-SD increase in the 7-year average concentration 

of each constituent), and 4) the association between the SV slopes and the monitor-specific 7-

year averages of PM2.5 constituents, adjusted by community-level confounders (the γk

coefficients from [3], expressed as the percentage increase in the mortality rate ratio for previous 

year PM2.5 associated with a 1-SD increase in the 7-year average concentration of each 

constituent.  

To find the best fit for the second level model, we conducted an extensive sensitivity analysis. 

We considered the following 8 models: no explanatory variable, constituents only, community-

level confounders only, or both constituents and community-level confounders as explanatory 



10 

variables, all with and without spatially correlated errors. Among the 8 options, we chose the 

best fit based on the Deviance Information Criteria (DIC) (Spiegelhalter 2002).  

There were 277 PM2.5 monitoring locations with missing values for the constituents. Separately 

for each constituent, we fit a Bayesian spatial Gaussian process (GP) model based on the 

observed data (i.e., 241 locations) and estimated a spatial correlation using the spBayes R 

package (Finley et al. 2007) and imputed the missing values based on the posterior predictive 

sample means for the 277 PM2.5 monitors (see Supplemental Material, Bayesian spatial Gaussian 

process (GP) for missing imputation) Prior to using the imputed constituent levels in the analysis, 

we confirmed that the Bayesian spatial GP modeling was appropriate for imputation via a cross-

validation (CV) study (see Supplemental Material, Cross validation study).  

We conducted the analysis for the complete case data (n=241 monitoring locations with the data 

available for both PM2.5 total mass and the chemical constituents) and for the all sites data 

(n=518 monitoring locations using imputed values for the 277 locations without measurements 

for PM2.5 chemical constituents). Also, we analyzed the data for the entire elderly population 

(≥65 yrs) and stratified by two age groups (65-74 yrs versus ≥75 yrs).  

Results 

Table 1 reports summary statistics for each variable for the complete case data (n=241) and for 

the all sites data (n=518). Figure 2a displays maps of 7-year averages of PM2.5 exposure levels 

(µg/m3) and Figure 2b presents maps of 7-year averages of mortality rates 

(deaths/month/1000persons) for 518 monitoring locations. Figure 3 shows maps of 7-year 

averages of each chemical constituent (µg/m3) for the 241 locations with available data. SO4
= 
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and NO3
- levels seem to exhibit strong spatial correlations; OCM, Si, and Na levels moderate 

spatial correlations; and EC levels weak spatial correlations with high values only in a few 

locations. Estimated spatial correlations were obtained from the spatial GP model between pairs 

of monitors with a distance of about 40 miles are 0.05, 0.20, 0.21, 0.19, 0.21, 0.20 for EC, OCM, 

SO4
=, Si, NO3

-, and Na, respectively. All 5 community-level confounders are also spatially 

mapped (Figure S1) over the 518 locations.  

The correlations among the 7-year averages of PM2.5 total mass, the PM2.5 chemical constituents 

and community-level confounders are summarized in Table S1 for the complete case data 

(n=241). We observed that PM2.5 is correlated positively with OCM (0.43), SO4
= (0.61), and the 

proportion of black residents (0.32) and inversely with Na (-0.41). The highest positive 

correlations among the constituents were observed between EC and OCM (0.44), SO4
= and OCM 

(0.41), and Si and OCM (0.43). Among the community-level confounders, strong positive 

correlations were observed as 0.62 between median family income and the proportion of people 

with high school diploma or equivalent and 0.50 between the proportions of white residents and 

high school graduates, whereas the strongest negative correlation was -0.84 between the 

proportions of white and black residents. Between the constituents and the community-level 

confounders, the highest correlations were observed for OCM at 0.39 and for Si at 0.34 with the 

proportion of black residents. 

Prior to the BH regression modeling, we conducted cross-validation (CV) studies for our 

imputation method for the missing constituent levels. The sample correlation coefficients 

between the observed and predicted values for the test data are 0.64-0.94 for all constituents 

averaged over 5 CV datasets (Supplemental Material, Table S2). The Root Mean Squared Error 
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(RMSE) for prediction for each constituent and the average RMSE over 5 CV datasets is about 

half of the sample standard deviation for all constituents (Supplemental Material, Table S3). 

Scatter plots for the observed vs. predicted data show that the points generally follow the 

reference line (meaning observed values = predicted values) (Supplemental Material, Figure S2). 

Based on the CV study results, we concluded that the Bayesian spatial GP method was 

appropriate for imputing the missing constituents in our study. 

We analyzed the complete case data (n=241) and the all sites data (n=518), separately. We fit 

Equations [1], [2], [3], and Supplemental Material, Equation [S1] with 8 different options and 

chose the best fit based on the smallest DIC (Supplemental Material, Table S4). We obtained the 

smallest DIC for the model including both chemical constituents and community-level 

confounders as explanatory variables and with spatially independent errors both for the SV 

intercept and slope model in complete case data as well as in the all sites data. 

Figures 4a and 4b display results from the first level of the BH model for complete case data (left 

panels) and all sites data (right panels), respectively. Both data showed similar results. Figure 4a 

shows the estimated monthly mortality rate when the previous-year PM2.5 is equal to its monitor-

specific overall average ranges from 3.37 to 6.15 (deaths/month/1000persons) over the study 

region from all sites data analysis. Also, Figure 4b shows the estimated association of mortality 

rate with 1 µμg/m! increase in the previous-year PM2.5 is from -1.0 to 4.6 (% increase in 

mortality rate). 

Figure 5a and 5b report the results from the second level of the BH model for complete case data 

(left-solid bars) and all sites data (right-dashed bars), respectively. Results were similar between 

complete case data and all sites data, but the all sites estimates were somewhat smaller and their 
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confidence intervals are narrower. In both analyses, we observed that adjusting for the 

community-level confounders and PM2.5 total mass, EC, Si, and NO3
- were positively associated 

with mortality rate (the SV intercept, βk) while SO4
= was inversely related to mortality (Figure 

5a). Meanwhile, SV slope estimates (γk) indicated that the percentage increase in mortality rate 

with a 1-unit increase in average previous-year PM2.5 was greater than expected when combined 

with a 1-SD increase in SO4
= and Na (Figure 5b).  

Finally, we analyzed the data stratified by two age groups (65-74 yrs versus ≥75 yrs). For the SV 

intercept model (Supplemental Material, Figure S3), results for younger age group were similar 

to those for the all age analysis (i.e., main effect estimates for EC, Si, and NO3
- were significant) 

whereas for the SV slope model (Supplemental Material, Figure S4), both age groups (65-74 and 

≥75 yrs) had results similar to those for all age analysis (≥65 yrs).  

Discussion 

We investigated: 1) whether month-to-month changes in mortality rates were associated with 

month-to-month changes in the previous-year average exposure to PM2.5; and 2) whether 7-year 

average levels of PM2.5 chemical constituents modified this association.  

For the SV intercept, EC, Si, and NO3
- were positively associated with mortality rates after 

adjusting for PM2.5 total mass and the community-level confounders. For EC, our results are 

consistent with a previous cohort study of female public school professionals in California (Ostro 

et al. 2010). Evidence for the toxicity of Si was also found in other studies. Ostro et al. (2010) 

reported that long-term exposure to Si was positively associated with pulmonary mortality. Si 

may serve as a surrogate for toxic constituents found in mineral dust associated with traffic 
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(Moreno et al. 2013; Reff et al. 2009). A previous study reported that long-term exposure to 

traffic or traffic-related pollutants is associated with cardiopulmonary mortality (Jerrett et al. 

2005). Few studies examined associations for NO3
- with mortality in a long-term framework. 

Ostro et al. (2010) reported that long-term exposure to NO3
- was significant for mortality in a 

single pollutant model but not in a multi-pollutant model. Additionally, SO4
= was found to be 

inversely associated with mortality rates, which is inconsistent with previous studies where 

positive associations were found (Dockery et al., 1993; Ostro et al. 2010; Pope et al., 1995, 2002). 

While the observed positive associations were from single pollutant approaches, our study uses a 

multi-pollutant analysis also including adjustment for the PM2.5 total mass and community-level 

confounders. Therefore, the inverse associations that we observed should be interpreted with 

caution, as they may be an artifact of multi-collinearity resulting from correlations between SO4
= 

and other constituents, PM2.5 total mass, and community-level confounders. 

SO4
= and Na were significant modifiers of monitor-specific associations between previous-year 

average PM2.5 and mortality rates. Previous long-term exposure studies for PM2.5 constituents 

have reported significant positive associations of SO4
= with all-cause mortality (Dockery et al. 

1993; Pope et al. 2002) or with cardiopulmonary mortality (Ostro et al. 2010; Pope et al. 2002). 

Na was also a significant modifier that strengthened the association between long-term PM2.5 and 

mortality. Few studies have estimated associations between Na and health outcomes, with some 

showing evidence of associations with mortality (Krall et al. 2013) or hospital admission 

(Zanobetti et al. 2009).  

Several possible mechanisms have been proposed in human subject studies linking constituents 

to biomarkers: systemic inflammation and oxidative stress associated with EC (Neophytou et al. 
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2013), altered DNA  methylation related to Si (Hou et al. 2014), and inflammation related to 

NO3
-, and SO4

= (Wu et al. 2012). However, because of limited evidences from 

experimental/toxicological studies, the biological pathway through which short-term exposure to 

PM2.5 and its components affect health is still an area of active investigation, and the mechanisms 

for long-term exposure are less understood. 

The US EPA measures over 50 different chemical constituents. Analyzing all available 

constituents would present problems of multiple comparisons. We selected the 6 constituents that 

were previously shown to be the largest contributors to PM2.5 total mass and/or co-vary with 

PM2.5 total mass (Bell et al. 2007). Also, the reliability of a community-level average of PM2.5 

constituent exposure varies by constituent. For the 6 constituents investigated in the present 

study, the average correlation of monitors in close proximity (<5km) ranges from 0.60 to 0.93 

and for larger distances (20-50km) ranges from 0.46 to 0.88 (Bell et al. 2011). The spatial 

heterogeneity of many other constituents may be larger, limiting the interpretation of 

community-level exposures. However, we recognize that other constituents have also been found 

to be associated with human health. In particular, associations of health outcomes with PM2.5 

metal constituents that were not included in our analysis, such as aluminum (Al), calcium (Ca), 

chromium (Cr), lead (Pb), manganese (Mn), nickel (Ni), titanium (Ti), vanadium (V), and zinc 

(Zn), have been reported in previous studies (Bell et al. 2014; Cavallari et al. 2008; Hsu et al. 

2011; Lippmann et al. 2006; Wu et al. 2012).  

One limitation of the available air pollution data is that monitors that measure PM2.5 total mass 

and monitors that measure the PM2.5 chemical constituents are misaligned (Figure 1). We 

addressed this limitation by assuming that ambient levels of PM2.5 constituents were 
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homogeneous within a 6 mile radius. This spatial homogeneity assumption for air pollutants 

builds on a previous research (Bell et al. 2011) where 6 miles (about 10km) in radius is a 

reasonable buffer size for the homogeneity assumption. In Bell et al. (2011), the estimated spatial 

correlations between pairs of monitors with distances of 5-10 km are 0.67, 0.85, 0.95, 0.62, 0.95, 

0.59 for EC, OCM, SO4
=, Si, NO3

-, and Na, respectively. However, spatial variability varies by 

constituent, for example with more heterogeneity for Si or Na than for SO4
= or NO3

-, and 

different buffer sizes may be applied for different constituents when aligning various sources of 

data.  

Another limitation for air pollution data is that monitors that measure PM2.5 total mass are much 

denser than monitors that measure PM2.5 chemical constituents (Figure 1). When we aligned the 

two kinds of monitors, missing data occurred for almost half of the PM2.5 monitors. To avoid 

simply removing the observations with missing values and reducing the sample size to half, we 

adopted a Bayesian spatial GP modeling and conducted a single value imputation for the missing 

data separately for each constituent. We compared the results between the complete case data 

analysis and the all sites data analysis with the imputed values. Although imputation did not 

change our primary conclusions, results based on the imputed data should be interpreted with 

caution. Specifically, using a single-value imputation does not incorporate uncertainty for 

prediction and measurement error can occur for the explanatory variables in regression modeling 

(Gryparis et al. 2009).  

In our study, the PM data are the ambient levels, which we use to approximate the actual human 

exposure. The ambient level of a given pollutant is not a perfect surrogate of personal exposure 

to that pollutant, which can induce exposure measurement error into the analysis with variations 
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in error by constituent. Although in a multi-pollutant analysis such as the present study, this type 

of errors may induce upwards bias in regression coefficient estimates, resulting in anti-

conservative inference on health effects, several authors have shown that this type of bias barely 

occurs in situations in which the amount of error or the correlations among pollutants in analysis 

are extremely large (Schwartz and Coull 2003). Therefore, it is unlikely that differences between 

ambient levels and personal exposures explain the observed associations in our study.  

Our analysis is based on a multi-site time-series data where long-term exposure was estimated by 

calculating previous 1-year average of daily exposure values at each temporal point (i.e. first day 

of each month). However, results may be sensitive to different choices of timeframes. Kim et al. 

(2012) reported that different lag values should be selected for the short-term effects of PM2.5 

constituents depending on health outcomes. Shorter or longer timeframes than a year could be 

considered for examining long-term health effects of PM2.5.  

Our study focused on the Eastern Region of the US and our findings may not be generalizable to 

other areas because the characteristics of PM mixtures and populations are quite different across 

the US (Bell et al. 2007), and effect modification by the chemical composition of PM2.5 may vary 

among regions. Also, we focused on the elderly population, which may be more susceptible to 

effects of exposure than other age groups. In our study, slight differences in results were found 

between two age groups (65-74 yrs and ≥75 yrs).  

To our knowledge, this is the first large-scale study (covering the Eastern US) investigating the 

association between long-term exposure to PM2.5 and mortality rate and effect modification by 

the chemical constituents of PM2.5. Unlike previous studies of PM2.5 constituents, we used a BH 
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regression approach, where PM2.5 constituents were modeled as potential modifiers of the main 

effect of PM2.5 on health outcomes. Despite limitations, our findings add new evidence regarding 

the differential toxicity of PM2.5 constituents and their potential influence on the long-term health 

effects of PM2.5. 



19 

References 

Bell ML, Dominici F, Ebisu K, Zeger, SL, Samet, JM. 2007. Spatial and temporal variation in 

PM2.5 chemical composition in the United States for health effects studies. Environ Health 

Perspect. 115:989-995. 

Bell ML, Ebisu K, Peng RD. 2011. Community-level spatial heterogeneity of chemical 

constituent levels of fine particulates and implications for epidemiological research. J Expo 

Sci Environ Epidemiol. 21:372-384. 

Bell ML, Ebisu K, Leaderer BP, Gent JF, Lee HJ, Koutrakis P, et al. 2014. Associations of PM2.5 

constituents and sources with hospital admissions: analysis of four counties in Connecticut 

and Massachusetts (USA) for persons >65 years of age. Environ Health Perspect. 122:138-

144. 

Cao, J, Xu, J, Xu, Q, Chen, B, Kan H. 2012. Fine Particulate Matter Constituents and 

Cardiopulmonary Mortality in a Heavily Polluted Chinese City. Environ Health Perspect. 

120:373-378. 

Cavallari JM, Eisen EA, Fang SC, Schwartz J, Hauser R, Herrick RF, et al. 2008. PM2.5 metal 

exposures and nocturnal heart rate variability: a panel study of boilermaker construction 

workers. Environ Health. 7:36. 

Dockery DW, Pope CA III, Xu X, Spengler JD, Ware JH, Fay ME, et al. 1993. An association 

between air pollution and mortality in six U.S. cities. New Engl J Med. 329(24):1753–1759. 

Dominici, F, Peng, RD, Barr, CD, Bell, ML. 2010. Protecting Human Health from Air Pollution: 

Shifting from a Single-Pollutant to a Multi-pollutant Approach. Epidemiology. 21(2):187-

194. 

Finley, AO, Banerjee, S, Carlin, BP. 2007. spBayes: An R Package for Univariate and 

Multivariate Hierarchical Point-referenced Spatial Models. J Stat Softw. 19(4):1–24. 

Gelfand, AE, Kim, H, Sirmans CF, Banerjee, S. 2003. Spatial modeling with spatially-varying 

coefficient processes. J Am Stat Assoc.. 98:387-396. 

Greven S, Dominici, F, Zeger, S. 2011. An approach to the estimation of chronic air pollution 

effects using spatio-temporal information. J Am Stat Assoc. 106:396-406. 

Gryparis A, Paciorek CJ, Zeka A, Schwartz J, Coull BA. 2009. Measurement error caused by 

spatial misalignment in environmental epidemiology. Biostatistics. 10:258-274. 



20 

 

Hou L, Zhang X, Zheng Y, Wang S, Dou C, Guo L, et al. 2014. Altered methylation in tandem 

repeat element and elemental component levels in inhalable air particles. Environ Mol 

Mutagen. 55:256-265. 

Hsu SO, Ito K, Lippmann M. 2011. Effects of thoracic and fine PM and their components on 

heart rate and pulmonary function in COPD patients. J Exp SciEnviron Epidemiol. 21: 464-

472 

Ito K, Mathes R, Ross Z, Nádas A, Thurston G, Matte T. 2011. Fine particulate matter 

constituents associated with cardiovascular hospitalizations and mortality in New York City. 

Environ Health Perspect. 119:467–473. 

Jerrett M, Burnett RT, Ma R, Pope CA III, Krewski D, Newbold KB, et al. 2005. Spatial analysis 

of air pollution and mortality in Los Angeles. Epidemiology. 16(6):727–736. 

Kim SY, Peel JL, Hannigan MP, Dutton SJ, Sheppard L., Clark ML, et al. 2012. The Temporal 

Lag Structure of Short-term Associations of Fine Particulate Matter Chemical Constituents 

and Cardiovascular and Respiratory Hospitalizations. Environ Health Perspect. 

120(8):1094–1099. 

Levy JL, Diez, D, Dou, Y, Barr, CD, Dominici, F. 2012. A Meta-Analysis and Multisite Time-

Series Analysis of the Differential Toxicity of Major Fine Particulate Matter Constituents. 

Am J Epidemiol. 175(11):1091-1099. 

Lippmann M, Ito K, Hwang JS, Maciejczyk P, Chen LC. 2006. Cardiovascular effects of nickel 

in ambient air. Environ Health Perspect. 114:1662–1669. 

Mostofsky E, Schwartz, J, Coull AB, Koutrakis, P, Wellenius, GA, Suh, HH, et al. 2012. 

Modeling an association between particle constituents of air pollution and health outcomes. 

Am J Epidemiol. 176(4):317-326. 

National Research Council. 2004. Research Priorities for Airborne Particulate Matter. IV. 

Continuing Research Progress. Washington, DC: National Academies Press. 

Neophytou AM, Hart JE, Cavallari HM, Smith TJ, Dockery DW, Coull BA, et al. 2013. Traffic-

related exposures and biomarkers of systemic inflammation, endothelial activation and 

oxidative stress: a panel study in the US trucking industry. Environ Health. 12:105 

Ostro B, Roth L, Malig B, Marty M. 2009. The effects of fine particle constituents on respiratory 

hospital admissions in children. Environ Health Perspect. 117:475–480. 



21 

 

Ostro B, Lipsett M, Reynolds P, et al. 2010. Long-term exposure to constituents of fine 

particulate air pollution and mortality: results from the California Teachers Study. Environ 

Health Perspect. 118(3):363–369. 

Peng RD, Bell ML, Geyh AS, McDermott A, Zeger SL, Samet JM, et al. 2009. Emergency 

admissions of cardiovascular and respiratory diseases and the chemical composition of fine 

particle air pollution. Environ Health Perspect. 117:957–963. 

Krall JR, Anderson B, Dominici F, Bell ML. Peng RD. 2013. Short-term exposure to particulate 

matter constituents and mortality in a national study of US urban communities. Environ 

Health Perspect. 121:1148–1153 

Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. 2002. Lung cancer, 

cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am 

Med Assoc. 287(9):1132–1141. 

Pope CA III, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, et al. 1995. 

Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am 

J Respir Crit Care Med. 151:669–674. 

Reff A, Bhave PV, Simon H, Pace TG, Pouliot GA, Mobley JD, et al. 2009. Emissions Inventory 

of PM2.5 Trace Elements across the United States. Environ Sci Technol. 43:5790-5796 

Science Advisory Board, US Environmental Protection Agency. 2004. Advisory on Plans for 

Health Effects Analysis in the Analytical Plan for EPA’s Second Prospective Analysis—

Benefits and Costs of the Clean Air Act, 1990–2020. Available: 

http://yosemite.epa.gov/sab%5CSABPRODUCT.NSF/08E1155AD24F871C85256E540043

3D5D/$File/council_adv_04002.pdf [accessed 28 March 2014] 

Schwartz J, Coull BA. 2003. Control for confounding in the presence of measurement error in 

hierarchical models. Biostatistics. 4:539-553. 

Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A. 2002. Bayesian Measures of Model 

Complexity and Fit. J R Stat Soc. Series B. 64(4):583-639. 

U.S. EPA. 2009. Integrated Science Assessment for Particulate Matter. EPA/600/R-08/139F. 

U.S. EPA. 2014. Air Quality System (AQS). Available: http://www.epa.gov/ttn/airs/airsaqs/ 

[accessed 1 July 2013]  

http://yosemite.epa.gov/sab%5CSABPRODUCT.NSF/08E1155AD24F871C85256E5400433D5D/$File/council_adv_04002.pdf


22 

 

U.S. Census Bureau. 2000. Census 2000 Gateway. Available: 

http://www.census.gov/main/www/cen2000.html [accessed 22 March 2013].  

Wu S, Deng, F, Wei, H, Huang, J, Wang, H, Shima, M, et al. 2012. Chemical constituents of 

ambient particulate air pollution and biomarkers of inflammation, coagulation and 

homocysteine in healthy adults: A prospective panel study. Part Fibre Toxicol. 9:49.  

Zanobetti A, Franklin M, Koutrakis P, Schwartz J. 2009. Fine particulate air pollution and its 

components in association with cause-specific emergency admissions. Environ Health 8:58. 

Zhou J, Ito K, Lall R, Lippmann M, Thurston G. 2011. Time-series analysis of mortality effects 

of fine particulate matter constituents in Detroit and Seattle. Environ Health Perspect. 

119:461–466.



23 

 

Table 1. Summary statistics for each variable. For population size at risk, mortality count and long-term (previous 1-year average) PM2.5, 

location-specific monthly values are averaged across locations for the whole study period (2000-2006). For chemical constituents, location-

specific 7-year averages are averaged across locations. For community-level confounders, location-specific values are averaged across locations. 

Variable Complete Case Data (n=241) 
Mean ±  Std Dev 

All Sites Data (n=518) 
Mean ±  Std Dev 

Population size at risk (#/month) 16901.00 ±17307.31 14538.92±15453.71 
Mortality count (#/month) 76.01 ±74.04 64.93±66.7 
Long-term PM2.5 exposure level (µg/m3) 14.56 ±1.88 13.7±2.13 

PM2.5 chemical 
constituents 

(µg/m3) 

Elemental carbon (EC) 0.71±0.33 0.68±0.24* 
Organic carbon matter (OCM) 4.1±1.06 4.05±0.90* 
Sulfate (SO4

=) 4.22±0.81 4.14±0.80* 
Silicon (Si) 0.09±0.03 0.09±0.03* 
Nitrate (NO3

-) 1.86±0.86 1.68±0.85* 
Sodium (Na) 0.16±0.08 0.17±0.07* 

Community-level 
confounders 

Family income ($) 38247.39±11149.87 40305.00±12461.21 
% high school graduatea 0.78±0.06 0.79±0.08 
% urbanb 0.93±0.16 0.86±0.23 
% whitec 0.64±0.20 0.70±0.20 
% blackd 0.25±0.18 0.19±0.17 

*Numbers are calculated including the imputed PM2.5 constituent levels for the 277 PM2.5 with missing constituent levels.  
aThe proportion of people with high school diploma or equivalent. bThe proportion of residents in urban environment. cThe proportion of while 

residents. dThe proportion of black residents. 
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Figure Legends 

Figure 1. Map of 518 PM2.5 monitor locations and 174 PM2.5 chemical constituent monitor 

locations in the Eastern Region of the US. 

Figure 2a. Map of 7-year (2000-2006) averages of monthly long-term (previous 1-year 

average) PM2.5 exposure (µg/m3) for all PM2.5 monitor locations (n=518). 

Figure 2b. Map of 7-year (2000-2006) averages of monthly mortality rate 

(deaths/month/1000persons) for all PM2.5 monitor locations (n=518).  

Figure 3. Maps of 7-year (2000-2006) averages of each of the 6 PM2.5 chemical constituents 

(µg/m3) for 241 monitor locations with available data 

Figure 4a. Map of the estimates (posterior means) of the spatially-varying (SV) intercept 

from the complete case data analysis (n=241, left) and the all sites data analysis (n=518, 

right). The values represent the monthly mortality rate (deaths/month/1000persons) when 

previous-year PM2.5 is at location-specific average. 

Figure 4b. Map of the estimates (posterior means) of the spatially-varying (SV) slope from 

the complete case data analysis (n=241, left) and the all sites data analysis (n=518, right). The 

values represent the % increase in the monthly mortality rate associated with 1 µg/m3 increase 

in previous-year PM2.5. 

Figure 5a. Posterior estimates with 95% posterior intervals for the βk regression coefficients 

in the second-level SV intercept model. Left-solid bars are for the complete case data (n=241) 

and right-dashed bars are for the all sites data (n=518). Values correspond to the estimated 

percentage increase in monthly mortality rate associated with a 1-SD increase in each 

constituent, adjusted for previous-year average of PM2.5 total mass and for community-level 

covariates. 

Figure 5b. Posterior estimates with 95% posterior intervals for the γk regression coefficients 

in the second-level SV slope model. Left-solid bars are for the complete case data (n=241) 

and right-dashed bars are for the all sites data (n=518). Values correspond to the estimated 

percentage increase in the association between previous-year average of PM2.5 and mortality 
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when combined with a 1-SD increase in each constituent, adjusted for community level 

covariates. 
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